
Under review as a conference paper at ICLR 2021

ADAGCN: ADABOOSTING GRAPH CONVOLUTIONAL
NETWORKS INTO DEEP MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

The design of deep graph models still remains to be investigated and the crucial
part is how to explore and exploit the knowledge from different hops of neighbors
in an efficient way. In this paper, we propose a novel RNN-like deep graph neu-
ral network architecture by incorporating AdaBoost into the computation of net-
work; and the proposed graph convolutional network called AdaGCN (Adaboost-
ing Graph Convolutional Network) has the ability to efficiently extract knowledge
from high-order neighbors of current nodes and then integrates knowledge from
different hops of neighbors into the network in an Adaboost way. Different from
other graph neural networks that directly stack many graph convolution layers,
AdaGCN shares the same base neural network architecture among all “layers”
and is recursively optimized, which is similar to a RNN. Besides, We also theo-
retically established the connection between AdaGCN and existing graph convo-
lutional methods, presenting the benefits of our proposal. Finally, extensive ex-
periments demonstrate the consistent state-of-the-art prediction performance on
graphs across different label rates and the computational advantage of our ap-
proach AdaGCN.

1 INTRODUCTION

Recently, research related to learning on graph structural data has gained considerable attention in
machine learning community. Graph neural networks (Gori et al., 2005; Hamilton et al., 2017;
Veličković et al., 2018), particularly graph convolutional networks (Kipf & Welling, 2017; Deffer-
rard et al., 2016; Bruna et al., 2014) have demonstrated their remarkable ability on node classifi-
cation (Kipf & Welling, 2017), link prediction (Zhu et al., 2016) and clustering tasks (Fortunato,
2010). Despite their enormous success, almost all of these models have shallow model architectures
with only two or three layers. The shallow design of GCN appears counterintuitive as deep versions
of these models, in principle, have access to more information, but perform worse. Oversmooth-
ing (Li et al., 2018) has been proposed to explain why deep GCN fails, showing that by repeatedly
applying Laplacian smoothing, GCN may mix the node features from different clusters and makes
them indistinguishable. This also indicates that by stacking too many graph convolutional layers,
the embedding of each node in GCN is inclined to converge to certain value (Li et al., 2018), mak-
ing it harder for classification. These shallow model architectures restricted by oversmoothing issue
limit their ability to extract the knowledge from high-order neighbors, i.e., features from remote
hops of neighbors for current nodes. Therefore, it is crucial to design deep graph models such that
high-order information can be aggregated in an effective way for better predictions.

There are some works (Xu et al., 2018b; Liao et al., 2019; Klicpera et al., 2018; Li et al., 2019)
that tried to address this issue partially, and the discussion can refer to Appendix A.1. By contrast,
we argue that a key direction of constructing deep graph models lies in the efficient exploration
and effective combination of information from different orders of neighbors. Due to the apparent
sequential relationship between different orders of neighbors, it is a natural choice to incorporate
boosting algorithm into the design of deep graph models. As an important realization of boosting
theory, AdaBoost (Freund et al., 1999) is extremely easy to implement and keeps competitive in
terms of both practical performance and computational cost (Hastie et al., 2009). Moreover, boosting
theory has been used to analyze the success of ResNets in computer vision (Huang et al., 2018) and
AdaGAN (Tolstikhin et al., 2017) has already successfully incorporated boosting algorithm into the
training of GAN (Goodfellow et al., 2014).

1

L.L
Underline
v. 利用；剥削，榨取；开采
n. 英勇的行为

L.L
Underline
英[prɪ'zɛnt]
v. 举向(present的现在分词)；面向；举枪瞄准；（分娩时婴儿）露出

L.L
Underline
英[rɪˈmɑːkəbl] 美[rɪˈmɑːrkəbl]
adj. 异常的，引人注目的，；卓越的；显著的；非凡的，非常（好）的

L.L
Underline
英[ɪˈnɔːməs] 美[ɪˈnɔːrməs]
adj. 巨大的；极大的

L.L
Underline
英[ˈʃæləʊ] 美[ˈʃæloʊ]
adj. 浅的；肤浅的；（呼吸）浅的，弱的

L.L
Underline
英[kaʊntərɪn'tju:ɪtɪv] 美[ˌkaʊntərɪn'tjuɪtɪv]
adj. 违反直觉的

L.L
Underline
英[in ˈprinsəpl] 美[ɪn ˈprɪnsəpəl]
原则上，基本上

L.L
Underline
英[ɪnˈklaɪnd] 美[ɪnˈklaɪnd]
adj. 倾斜的；倾向的
v. （使）倾斜(incline的过去式和过去分词)；（使）偏向

L.L
Underline
英[kənˈvɜːdʒ] 美[kənˈvɜːrdʒ]
v. 汇集，聚集；（路、线等）相交，汇合；（思想等）趋同

L.L
Highlight

L.L
Underline
 相比之下

Under review as a conference paper at ICLR 2021

In this work, we focus on incorporating AdaBoost into the design of deep graph convolutional
networks in a non-trivial way. Firstly, in pursuit of the introduction of AdaBoost framework, we
refine the type of graph convolutions and thus obtain a novel RNN-like GCN architecture called
AdaGCN. Our approach can efficiently extract knowledge from different orders of neighbors and
then combine these information in an AdaBoost manner with iterative updating of the node weights.
Also, we compare our AdaGCN with existing methods from the perspective of both architectural
difference and feature representation power to show the benefits of our method. Finally, we conduct
extensive experiments to demonstrate the consistent state-of-the-art performance of our approach
across different label rates and computational advantage over other alternatives.

2 OUR APPROACH: ADAGCN

2.1 ESTABLISHMENT OF ADAGCN

Consider an undirected graph G = (V, E) with N nodes vi ∈ V , edges (vi, vj) ∈ E . A ∈ RN×N
is the adjacency matrix with corresponding degree matrix Dii =

∑
j Aij . In the vanilla GCN

model (Kipf & Welling, 2017) for semi-supervised node classification, the graph embedding of
nodes with two convolutional layers is formulated as:

Z = Â ReLU(ÂXW (0))W (1) (1)

where Z ∈ RN×K is the final embedding matrix (output logits) of nodes before softmax and K
is the number of classes. X ∈ RN×C denotes the feature matrix where C is the input dimension.
Â = D̃−

1
2 ÃD̃−

1
2 where Ã = A + I and D̃ is the degree matrix of Ã. In addition, W (0) ∈ RC×H

is the input-to-hidden weight matrix for a hidden layer with H feature maps and W (1) ∈ RH×K is
the hidden-to-output weight matrix.

Our key motivation of constructing deep graph models is to efficiently explore information of high-
order neighbors and then combine these messages from different orders of neighbors in an AdaBoost
way. Nevertheless, if we naively extract information from high-order neighbors based on GCN,
we are faced with stacking l layers’ parameter matrix W (i), i = 0, ..., l − 1, which is definitely
costly in computation. Besides, Multi-Scale Deep Graph Convolutional Networks (Luan et al.,
2019) also theoretically demonstrated that the output can only contain the stationary information
of graph structure and loses all the local information in nodes for being smoothed if we simply
deepen GCN. Intuitively, the desirable representation of node features does not necessarily need too
many nonlinear transformation f applied on them. This is simply due to the fact that the feature of
each node is normally one-dimensional sparse vector rather than multi-dimensional data structures,
e.g., images, that intuitively need deep convolution network to extract high-level representation for
vision tasks. This insight has been empirically demonstrated in many recent works (Wu et al., 2019;
Klicpera et al., 2018; Xu et al., 2018a), showing that a two-layer fully-connected neural networks is a
better choice in the implementation. Similarly, our AdaGCN also follows this direction by choosing
an appropriate f in each layer rather than directly deepen GCN layers.

Thus, we propose to remove ReLU to avoid the expensive joint optimization of multiple parameter
matrices. Similarly, Simplified Graph Convolution (SGC) (Wu et al., 2019) also adopted this prac-
tice, arguing that nonlinearity between GCN layers is not crucial and the majority of the benefits
arises from local weighting of neighboring features. Then the simplified graph convolution is:

Z = ÂlXW (0)W (1) · · ·W (l−1) = ÂlXW̃, (2)

where we collapse W (0)W (1) · · ·W (l−1) as W̃ and Âl denotes Â to the l-th power. In particular,
one crucial impact of ReLU in GCN is to accelerate the convergence of matrix multiplication since
the ReLU is a contraction mapping intuitively. Thus, the removal of ReLU operation could also
alleviate the oversmoothing issue, i.e. slowering the convergence of node embedding to indistin-
guishable ones (Li et al., 2018). Additionally, without ReLU this simplified graph convolution is
also able to avoid the aforementioned joint optimization over multiple parameter matrices, result-
ing in computational benefits. Nevertheless, we find that this type of stacked linear transformation
from graph convolution has insufficient power in representing information of high-order neighbors,
which is revealed in our experiment described in Appendix A.2. Therefore, we propose to utilize an
appropriate nonlinear function fθ, e.g., a two-layer fully-connected neural network, to replace the

2

L.L
Underline
adj. 非平凡的；面对较重大

L.L
Underline
 追求，寻求

L.L
Underline
英[vəˈnɪlə] 美[vəˈnɪlə]
n. 香子兰，香草；香子兰荚；香子兰精，香草精
adj. 香草的；香草味的；相对没有新意的，普通的

L.L
Underline
英[nɑˈi:vlɪ] 美[nɑˈivlɪ]
adv. 天真烂漫地，无邪地

L.L
Underline
英[ˈsteɪʃənri] 美[ˈsteɪʃəneri]
adj. 不动的，固定的；静止的，不变的；常备军的；定居的

L.L
Underline
英[mʌl'tɪsk'eɪl] 美[mʌl'tɪsk'eɪl]
通用换算；多刻度

L.L
Underline
英[ɪn'tju:ɪtɪvlɪ] 美[ɪnˈtjuɪtɪvlɪ]
adv. 直觉地，直观地；由直觉而得地

L.L
Underline
英[dɪˈzaɪərəbl] 美[dɪˈzaɪərəbl]
adj. 可取的，合意的，值得拥有的；性感的

L.L
Underline
英[ˈɪnsaɪt] 美[ˈɪnsaɪt]
n. 洞察力；领悟；了解

L.L
Underline
产生于

L.L
Underline
英[ˌmʌltɪplɪˈkeɪʃn] 美[ˌmʌltɪplɪˈkeɪʃn]
n. 增加，增殖，倍增；[数]乘法，乘法运算

L.L
Highlight

L.L
Highlight

L.L
Highlight

Under review as a conference paper at ICLR 2021

1

Figure 1: The RNN-like architecture of AdaGCN with each base classifier f (l)θ sharing the same
neural network architecture fθ. wl and θl denote node weights and parameters computed after the
l-th base classifier, respectively.

linear transformation W̃ in Eq. 2 and enhance the representation ability of each base classifier in
AdaGCN as follows:

Z(l) = fθ(Â
lX), (3)

where Z(l) represents the final embedding matrix (output logits before Softmax) after the l-th base
classifier in AdaGCN . This formulation also implies that the l-th base classifier in AdaGCN is
extracting knowledge from features of current nodes and their l-th hop of neighbors. Due to the
fact that the function of l-th base classifier in AdaGCN is similar to that of the l-th layer in other
traditional GCN-based methods that directly stack many graph convolutional layers, we regard the
whole part of l-th base classifier as the l-th layers in AdaGCN. As for the realization of Multi-class
AdaBoost, we apply SAMME (Stagewise Additive Modeling using a Multi-class Exponential loss
function) algorithm (Hastie et al., 2009), a natural and clean multi-class extension of the two-class
AdaBoost adaptively combining weak classifiers.

As illustrated in Figure 1, we apply base classifier f (l)θ to extract knowledge from current node
feature and l-th hop of neighbors by minimizing current weighted loss. Then we directly compute
the weighted error rate err(l) and corresponding weight α(l) of current base classifier f (l)θ as follows:

err(l) =

n∑
i=1

wiI
(
ci 6= f

(l)
θ (xi)

)
/

n∑
i=1

wi

α(l) = log
1− err(l)

err(l)
+ log(K − 1),

(4)

where wi denotes the weight of i-th node and ci represents the category of current i-th node. To
attain a positive α(l), we only need (1 − err(l)) > 1/K, i.e., the accuracy of each weak classifier
should be better than random guess (Hastie et al., 2009). This can be met easily to guarantee the
weights to be updated in the right direction. Then we adjust nodes’ weights by increasing weights
on incorrectly classified ones:

wi ← wi · exp
(
α(l) · I

(
ci 6= f

(l)
θ (xi)

))
, i = 1, . . . , n (5)

After re-normalizing the weights, we then compute Âl+1X = Â · (ÂlX) to sequentially extract
knowledge from l+1-th hop of neighbors in the following base classifier f (l+1)

θ . One crucial point
of AdaGCN is that different from traditional AdaBoost, we only define one fθ, e.g. a two-layer
fully connected neural network, which in practice is recursively optimized in each base classifier
just similar to a recurrent neural network. This also indicates that the parameters from last base
classifier are leveraged as the initialization of next base classifier, which coincides with our intuition
that l+1-th hop of neighbors are directly connected from l-th hop of neighbors. The efficacy of this
kind of layer-wise training has been similarly verified in (Belilovsky et al., 2018) recently. Further,
we combine the predictions from different orders of neighbors in an Adaboost way to obtain the
final prediction C(A,X):

C(A,X) = argmax
k

L∑
l=0

α(l)f
(l)
θ (ÂlX) (6)

3

L.L
Highlight

L.L
Underline
v. 两件或更多的事情同时发生(coincide的第三人称单数)；想法、意见等相同；相符；极为类似

L.L
Underline
英[ˈefɪkəsi] 美[ˈefɪkəsi]
n. 功效；效力；效验；生产率

Under review as a conference paper at ICLR 2021

Finally, we obtain the concise form of AdaGCN in the following:

ÂlX = Â · (Âl−1X)

Z(l) = f
(l)
θ (ÂlX)

Z = AdaBoost(Z(l))

(7)

Note that fθ is non-linear, rather than linear in SGC (Wu et al., 2019), to guarantee the representation
power. As shown in Figure 1, the architecture of AdaGCN is a variant of RNN with synchronous
sequence input and output. We provide a detailed description of the our algorithm in Section 3.

2.2 COMPARISON WITH EXISTING METHODS

GCN

SGC

JK

Figure 2: Comparison of the graph model architec-
tures. fa in JK network denotes one aggregation
layer with aggregation function such as concatena-
tion or max pooling.

Architectural Difference. As illustrated in
Figure 1 and 2, there is an apparent differ-
ence among the architectures of GCN (Kipf
& Welling, 2017), SGC (Wu et al., 2019),
JK (Xu et al., 2018b) and AdaGCN. Com-
pared with these existing graph convolutional
approaches that sequentially convey inter-
mediate result Z(l) to compute final pre-
diction, our AdaGCN transmits weights of
nodes wi, aggregated features of different
hops of neighbors ÂlX . More importantly, in
AdaGCN the embedding Z(l) is independent
of the flow of computation in the network and
the sparse adjacent matrix Â is also not di-
rectly involved in the computation of individ-
ual network because we compute Â(l+1)X in
advance and then feed it instead of Â into the classifier f (l+1)

θ , thus yielding significant computation
reduction, which will be discussed further in Section 3.

Connection with PPNP and APPNP. We also established a strong connection between AdaGCN
and previous state-of-the-art PPNP and APPNP (Klicpera et al., 2018) method that leverages per-
sonalized pagerank to reconstruct graph convolutions in order to use information from a large and
adjustable neighborhood. The analysis can be summarized in the following Proposition 1. Proof can
refer to Appendix A.3.

Proposition 1. Suppose that γ is the teleport factor. Let matrix sequence {Z(l)} be from the output
of each layer l in AdaGCN, then PPNP is equivalent to the Exponential Moving Average (EMA) with
exponentially decreasing factor γ on {Z(l)} in a sharing parameters version, and its approximate
version APPNP can be viewed as the approximated form of EMA with a limited number of terms.

Proposition 1 illustrates that AdaGCN can be viewed as an adaptive form of APPNP, formulated as:

Z =

L∑
l=0

α(l)f
(l)
θ (ÂlX) (8)

Specifically, the first discrepancy between AdaGCN and APPNP lies in the adaptive coefficient
α(l) in AdaGCN determined by the error of l-th base classifier f (l)θ rather than fixed exponentially
decreased weights in APPNP. In addition, AdaGCN employs classifier f (l)θ with different parameters
to learn the embedding of different orders of neighbors, while APPNP shares these parameters in its
form. We verified this benefit of our approach in our experiments shown in Section 4.2.

Comparison with MixHop MixHop (Abu-El-Haija et al., 2019) applied the similar way of graph
convolution by repeatedly mixing feature representations of neighbors at various distance. Propo-
sition 2 proves that both AdaGCN and MixHop are able to represent feature differences among
neighbors while previous GCNs-based methods cannot. Proof can refer to Appendix A.4. Recap the
definition of general layer-wise Neighborhood Mixing (Abu-El-Haija et al., 2019) as follows:

4

L.L
Underline
英[kənˈsaɪs] 美[kənˈsaɪs]
adj. 简明的，简洁的

L.L
Underline
英[ˈsɪŋkrənəs] 美[ˈsɪŋkrənəs]
adj. 同时存在[发生]的，同步的

L.L
Underline
英[ˌɑ:kɪˈtektʃərəl] 美[ˌɑrkɪˈtektʃərəl]
adj. 建筑学的；建筑上的；有关建筑的；符合建筑法的

L.L
Underline
英[ˌɪntəˈmiːdiət] 美[ˌɪntərˈmiːdiət]
adj. 中间的，中级的
n. 中间物，中间分子，中间人

L.L
Underline
vt. （心灵学用语）心灵运输（物体、人）

L.L
Underline
n. 差异，不一致

L.L
Underline
英[ˈri:kæp] 美[riˈkæp]
n. 胎面翻新的轮胎；重述要点；简明新闻
vt. 翻新胎面；扼要重述

L.L
Underline
英[ˌprɒpəˈzɪʃn] 美[ˌprɑːpəˈzɪʃn]
n. 提议；建议；待处理的问题；主张
v. 向…提议；向…求欢

Under review as a conference paper at ICLR 2021

Definition 1. General layer-wise Neighborhood Mixing: A graph convolution network has the abil-
ity to represent the layer-wise neighborhood mixing if for any b0, b1, ..., bL, there exists an injective
mapping f with a setting of its parameters, such that the output of this graph convolution network
can express the following formula:

f

(
L∑
l=0

blσ
(
ÂlX

))
(9)

Proposition 2. AdaGCNs defined by our proposed approach (Eq. equation 7) are capable of repre-
senting general layer-wise neighborhood mixing, i.e., can meet the Definition 1.

Albeit the similarity, AdaGCN distinguishes from MixHop in many aspects. Firstly, MixHop con-
catenates all outputs from each order of neighbors while we combines these predictions in an Ad-
aboost way, which has theoretical generalization guarantee based on boosting theory. Meantime,
MixHop allows full linear mixing of different orders of neighboring features, while AdaGCN uti-
lizes different non-linear transformation f (l)θ among all layers, enjoying stronger expressive power.

3 ALGORITHM

In practice, we employ SAMME.R (Hastie et al., 2009), the soft version of SAMME, in AdaGCN.
SAMME.R (R for Real) algorithm (Hastie et al., 2009) leverages real-valued confidence-rated pre-
dictions, i.e., weighted probability estimates, rather than predicted hard labels in SAMME, in the
prediction combination, which has demonstrated a better generalization and faster convergence than
SAMME. We elaborate the final version of AdaGCN in Algorithm 1. We provide the analysis on
the choice of model depth L in Appendix A.7, and then we elaborate the computational advantage
of AdaGCN in the following.

Algorithm 1 AdaGCN based on SAMME.R Algorithm

Input: Features Matrix X , normalized adjacent matrix Â, a two-layer fully connected network fθ,
number of layers L and number of classes K.
Output: Final combined prediction C(A,X).

1: Initialize the node weights wi = 1/n, i = 1, 2, ..., n on training set, neighbors feature matrix
X̂(0) = X and classifier f (−1)θ .

2: for l = 0 to L do
3: Fit the graph convolutional classifier f (l)θ on neighbor feature matrix X̂(l) based on f (l−1)θ by

minimizing current weighted loss.
4: Obtain the weighted probability estimates p(l)(X̂(l)) for f (l)θ :

p
(l)
k (X̂(l)) = Softmax(f (l)θ (c = k|X̂(l))), k = 1, . . . ,K

5: Compute the individual prediction h(l)k (x) for the current graph convolutional classifier f (l)θ :

h
(l)
k (X̂(l))← (K − 1)

(
log p

(l)
k (X̂(l))− 1

K

∑
k′

log p
(l)
k′ (X̂

(l))

)
where k = 1, . . . ,K.

6: Adjust the node weights wi for each node xi with label yi on training set:

wi ← wi · exp
(
−K − 1

K
y>i log p(l) (xi)

)
, i = 1, . . . , n

7: Re-normalize all weights wi.
8: Update l+1-hop neighbor feature matrix X̂(l+1):

X̂(l+1) = ÂX̂(l)

9: end for
10: Combine all predictions h(l)k (X̂(l)) for l = 0, ..., L.

C(A,X) = argmax
k

L∑
l=0

h
(l)
k (X̂(l))

11: return Final combined prediction C(A,X).

5

L.L
Underline
英[ɪn'dʒektɪv] 美[ɪn'dʒektɪv]
adj. 内射的，单射的

L.L
Underline

Under review as a conference paper at ICLR 2021

Analysis of Computational Advantage. Due to the similarity of graph convolution in Mix-
Hop (Abu-El-Haija et al., 2019), AdaGCN also requires no additional memory or computational
complexity compared with previous GCN models. Meanwhile, our approach enjoys huge com-
putational advantage compared with GCN-based models, e.g., PPNP and APPNP, stemming from
excluding the additional computation involved in sparse tensors, such as the sparse tensor multipli-
cation between Â and other dense tensors, in the forward and backward propagation of the neural
network. Specifically, there are only L times sparse tensor operations for an AdaGCN model with L
layers, i.e., ÂlX = Â · (Âl−1X) for each layer l. This operation in each layer yields a dense tensor
Bl = ÂlX for the l-th layer, which is then fed into the computation in a two-layer fully-connected
network, i.e., f (l)θ (Bl) = ReLU(BlW (0))W (1). Due to the fact that dense tensor Bl has been com-
puted in advance, there is no other computation related to sparse tensors in the multiple forward and
backward propagation procedures while training the neural network. By contrast, this multiple com-
putation involved in sparse tensors in the GCN-based models, e.g., GCN: Â ReLU(ÂXW (0))W (1),
is highly expensive. AdaGCN avoids these additional sparse tensor operations in the neural network
and then attains huge computational efficiency. We demonstrate this viewpoint in the Section 4.3.

4 EXPERIMENTS

Dateset Nodes Edges Classes Features Label Rate
CiteSeer 3,327 4,732 6 3,703 3.6%
Cora 2,708 5,429 7 1,433 5.2%
PubMed 19,717 44,338 3 500 0.3%
MS Academic 18,333 81,894 15 6,805 1.6%
Reddit 232,965 11,606,919 41 602 65.9%

Table 1: Dateset statistics

Experimental Setup. We se-
lect five commonly used graphs:
CiteSeer, Cora-ML (Bojchevski &
Günnemann, 2018; McCallum et al.,
2000), PubMed (Sen et al., 2008),
MS-Academic (Shchur et al., 2018)
and Reddit. Dateset statistics are
summarized in Table 1. Recent graph
neural networks suffer from overfit-
ting to a single splitting of training, validation and test datasets (Klicpera et al., 2018). To address
this problem, inspired by (Klicpera et al., 2018), we test all approaches on multiple random splits and
initialization to conduct a rigorous study. Detailed dataset splittings are provided in Appendix A.6.

Basic Setting of Baselines and AdaGCN. We compare AdaGCN with GCN (Kipf & Welling,
2017) and Simple Graph Convolution (SGC) (Wu et al., 2019) in Figure 3. In Table 2, we employ
the same baselines as (Klicpera et al., 2018): V.GCN (vanilla GCN) (Kipf & Welling, 2017) and
GCN with our early stopping, N-GCN (network of GCN) (Abu-El-Haija et al., 2018a), GAT (Graph
Attention Networks) (Veličković et al., 2018), BT.FP (bootstrapped feature propagation) (Buchnik
& Cohen, 2018) and JK (jumping knowledge networks with concatenation) (Xu et al., 2018b). In
the computation part, we additionally compare AdaGCN with FastGCN (Chen et al., 2018) and
GraphSAGE (Hamilton et al., 2017). We refer to the result of baselines from (Klicpera et al., 2018)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Layers

20

30

40

50

60

70

80

T
es

t A
cc

ur
ac

y(
%

)

Cora-ML

GCN
GCN(Residual)
SGC
AdaGCN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Layers

20

30

40

50

60

70

T
es

t A
cc

ur
ac

y(
%

)

Citeseer

GCN
GCN(Residual)
SGC
AdaGCN

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Layers

40

50

60

70

80

T
es

t A
cc

ur
ac

y(
%

)

Pubmed

GCN
GCN(Residual)
SGC
AdaGCN

Figure 3: Comparison of test accuracy of different models as the layer increases. We regard the l-th
base classifier as the l-th layer in AdaGCN as both of them are leveraged to exploit the information
from l-th order of neighbors for current nodes.

6

L.L
Underline
英[ɪˌnɪʃəlaɪ'zeɪʃn] 美[ɪˌnɪʃəlaɪ'zeɪʃn]
n. 设定初值，初始化

L.L
Underline
英[ˈrɪɡərəs] 美[ˈrɪɡərəs]
adj. 严密的；缜密的；严格的；枯燥的

Under review as a conference paper at ICLR 2021

and the implementation of AdaGCN is adapted from APPNP. For AdaGCN, after the line search
on hyper-parameters, we set h = 5000 hidden units for the first four datasets except Ms-academic
with h = 3000, and 15, 12, 20 and 5 layers respectively due to the different graph structures. In
addition, we set dropout rate to 0 for Citeseer and Cora-ML datasets and 0.2 for the other datasets
and 5×10−3L2 regularization on the first linear layer. We set weight decay as 1×10−3 for Citeseer
while 1 × 10−4 for others. More detailed model parameters and analysis about our early stopping
mechanism can be referred from Appendix A.6.

4.1 DESIGN OF DEEP GRAPH MODELS TO CIRCUMVENT OVERSMOOTHING EFFECT

It is well-known that GCN suffers from oversmoothing (Li et al., 2018) with the stacking of more
graph convolutions. However, combination of knowledge from each layer to design deep graph
models is a reasonable method to circumvent oversmoothing issue. In our experiment, we aim to
explore the prediction performance of GCN, GCN with residual connection (Kipf & Welling, 2017),
SGC and our AdaGCN with a growing number of layers.

From Figure 3, it can be easily observed that oversmoothing leads to the rapid decreasing of accu-
racy for GCN (blue line) as the layer increases. In contrast, the speed of smoothing (green line) of
SGC is much slower than GCN due to the lack of ReLU analyzed in Section 2.1. Similarly, GCN
with residual connection (yellow line) partially mitigates the oversmoothing effect of original GCN
but fails to take advantage of information from different orders of neighbors to improve the predic-
tion performance constantly. Remarkably, AdaGCN (red line) is able to consistently enhance the
performance with the increasing of layers across the three datasets. This implies that AdaGCN can
efficiently incorporate knowledge from different orders of neighbors and circumvent oversmoothing
of original GCN in the process of constructing deep graph models. In addition, the fluctuation of
performance for AdaGCN is much lower than GCN especially when the number of layer is large.

4.2 PREDICTION PERFORMANCE

Model Citeseer Cora-ML Pubmed MS Academic
V.GCN 73.51±0.48 82.30±0.34 77.65±0.40 91.65±0.09
GCN 75.40±0.30 83.41±0.39 78.68±0.38 92.10±0.08
N-GCN 74.25±0.40 82.25±0.30 77.43±0.42 92.86±0.11
GAT 75.39±0.27 84.37±0.24 77.76±0.44 91.22±0.07
JK 73.03±0.47 82.69±0.35 77.88±0.38 91.71±0.10
BT.FP 73.55±0.57 80.84±0.97 72.94±1.00 91.61±0.24
PPNP 75.83±0.27 85.29±0.25 OOM OOM
APPNP 75.73±0.30 85.09±0.25 79.73±0.31 93.27±0.08
PPNP (ours) 75.53±0.32 84.39±0.28 OOM OOM
APPNP (ours) 75.41±0.35 84.28±0.28 79.41±0.34 92.98±0.07
AdaGCN 76.68±0.20 85.97±0.20 79.95±0.21 93.17±0.07
P value 1.8×10−15 2.2×10−16 1.1×10−5 2.1×10−9

Table 2: Average accuracy under 100 runs with uncertainties
showing the 95 % confidence level calculated by bootstrap-
ping. OOM denotes “out of memory”. “(ours)” denotes the
results based on our implementation, which are slight lower
than numbers above from original literature (Klicpera et al.,
2018). P values of paired t test between APPNP (ours) and
AdaGCN are provided in the last row.

We conduct a rigorous study of
AdaGCN on four datasets under mul-
tiple splittings of dataset. The results
from Table 2 suggest the state-of-
the-art performance of our approach
and the improvement compared with
APPNP validates the benefit of adap-
tive form for our AdaGCN. More rig-
orously, p values under paired t test
demonstrate the significance of im-
provement for our method.

In the realistic setting, graphs usually
have different labeled nodes and thus
it is necessary to investigate the ro-
bust performance of methods on dif-
ferent number of labeled nodes. Here
we utilize label rates to measure the
different numbers of labeled nodes
and then sample corresponding labeled nodes per class on graphs respectively. Table 3 presents
the consistent state-of-the-art performance of AdaGCN under different label rates. An interesting
manifestation from Table 3 is that AdaGCN yields more improvement on fewer label rates compared

Citeseer Cora-ML Pubmed MS Academic
Label Rates 1.0% / 2.0% 2.0% / 4.0% 0.1% / 0.2% 0.6% / 1.2%
V.GCN 67.6±1.4/70.8±1.4 76.4±1.3/81.7±0.8 70.1±1.4/74.6±1.6 89.7±0.4/91.1±0.2
GCN 70.3±0.9/72.7±1.1 80.0±0.7/82.8±0.9 71.1±1.1/75.2±1.0 89.8±0.4/91.2±0.3
PPNP 72.5±0.9/74.7±0.7 80.1±0.7/83.0±0.6 OOM OOM
APPNP 72.2±1.3/74.2±1.1 80.1±0.7/83.2±0.6 74.0±1.5/77.2±1.2 91.7±0.2/92.6±0.2
AdaGCN 74.2±0.3/75.5±0.3 83.7±0.3/85.3±0.2 77.1±0.5/79.3±0.3 92.1±0.1/92.7±0.1

Table 3: Average accuracy across different label rates with 20 splittings of datasets under 100 runs.

7

L.L
Circle

L.L
Circle

L.L
Underline
英[ˌsɜ:kəmˈvent] 美[ˌsɜrkəmˈvent]
vt. 围绕，包围；用计防止；避免；（用欺骗手段）陷害

L.L
Underline
mitigates
v. 减轻，缓和(mitigate的第三人称单数)

L.L
Underline
英[rɪˈmɑː(r)kəbli] 美[rɪˈmɑrkəbli]
adv. 引人注目地，明显地，非常地；格外；出乎意料地

L.L
Underline
英[ˌflʌktʃʊ'eɪʃn] 美[ˌflʌktʃʊˈeɪʃn]
n. 波动，涨落，起伏，[物]脉动；动摇不定，踌躇；[生]彷徨变异

L.L
Highlight

L.L
Underline
adv. 严厉地，残酷地；严密地

L.L
Underline
英[ˌmænɪfeˈsteɪʃn] 美[ˌmænɪfeˈsteɪʃn]
n. 表示，显示；示威

Under review as a conference paper at ICLR 2021

with APPNP, showing more efficiency on graphs with few labeled nodes. Inspired by the Layer Ef-
fect on graphs (Sun et al., 2019), we argue that the increase of layers in AdaGCN can result in more
benefits on the efficient propagation of label signals especially on graphs with limited labeled nodes.

Reddit F1-Score Per-epoch training time
V.GCN 94.46±0.06 5627.46ms
PPNP OOM OOM
APPNP 95.04±0.07 29489.81ms
AdaGCN 95.39±0.13 32.29ms

Table 4: Average F1-scores and per-
epoch training time of typical methods
on Reddit dataset under 5 runs.

More rigorously, we additionally conduct the compari-
son on a larger dataset, i.e., Reddit. We choose the best
layer as 4 due to the fact that AdaGCN with larger num-
ber of layers tends to suffer from overfitting on this rela-
tively simple dataset (with high label rate 65.9%). Table 4
suggests that AdaGCN can still outperform other typical
baselines, including V.GCN, PPNP and APPNP. More ex-
perimental details can be referred from Appendix A.6.

4.3 COMPUTATIONAL EFFICIENCY

Citeseer Cora-ML Pubmed Ms-Academic
0

100

200

300

400

500

600

T
im

e
pe

r
ep

oc
h

(m
s)

Time
GCN
GraphSAGE-mean
FastGCN
APPNP
AdaGCN

1 2 3 4 5 6 7 8 9 10

Layers

0

50

100

150

200

250

T
im

e
pe

r
ep

oc
h

(m
s) k=28.7

k=23.8

k=0.1

Time on Pubmed
GCN
SGC
AdaGCN

Figure 4: Left: Per-epoch training time of AdaGCN vs other
methods under 5 runs on four datasets. Right: Per-epoch
training time of AdaGCN compared with GCN and SGC
with the increasing of layers and the digit after “k =” de-
notes the slope in a fitted linear regression.

Without the additional computational
cost involved in sparse tensors in the
propagation of the neural network,
AdaGCN presents huge computa-
tional efficiency. From the left part of
Figure 4, it exhibits that AdaGCN has
the fastest speed of per-epoch train-
ing time in comparison with other
methods except the comparative per-
formance with FastGCN in Pubmed.
In addition, there is a somewhat in-
consistency in computation of Fast-
GCN, with fastest speed in Pubmed
but slower than GCN on Cora-ML
and MS-Academic datasets. Further-
more, with multiple power iterations
involved in sparse tensors, APPNP
unfortunately has relatively expen-
sive computation cost. It should be
noted that this computational advan-
tage of AdaGCN is more significant when it comes to large datasets, e.g., Reddit. Table 4 demon-
strates AdaGCN has the potential to perform much faster on larger datasets.

Besides, we explore the computational cost of ReLU and sparse adjacency tensor with respect to
the number of layers in the right part of Figure 4. We focus on comparing AdaGCN with SGC and
GCN as other GCN-based methods, such as GraphSAGE and APPNP, behave similarly with GCN.
Particularly, we can easily observe that both SGC (blue line) and GCN (red line) show a linear
increasing tendency and GCN yields a larger slope arises from ReLU and more parameters. It also
shows that the computational cost involved sparse matrices in neural networks plays a dominant
role in all the cost especially when the layer is large enough. In contrast, our AdaGCN (pink line)
displays an almost constant trend as the layer increases because it avoids the additional computation
related to sparse matrices in a network, enjoying huge computational efficiency.

5 DISCUSSIONS AND CONCLUSION

One potential concern is that AdaBoost (Hastie et al., 2009; Freund et al., 1999) is established on
i.i.d. hypothesis while graphs have inherent data-dependent property. Fortunately, the statistical
convergence and consistency of boosting (Lugosi & Vayatis, 2001; Mannor et al., 2003) can still
be preserved when the samples are weakly dependent (Lozano et al., 2013). More discussion can
refer to Appendix A.5. In this paper, we propose a novel RNN-like deep graph neural network
architecture called AdaGCNs. With the delicate architecture design, our approach AdaGCN can
effectively explore and exploit knowledge from different orders of neighbors in an Adaboost way.
Our work paves a way towards better combining different-order neighbors to design deep graph
models rather than only stacking on specific type of graph convolution.

8

L.L
Underline
adv. 稍微

L.L
Underline
adj. 脆弱的；虚弱的；纤细的；精致的；熟练的；娇美的；柔和的；鲜美的；清香的；微妙的；技巧性很强的

L.L
Underline
铺平了一条道路

Under review as a conference paper at ICLR 2021

REFERENCES

Sami Abu-El-Haija, Amol Kapoor, Bryan Perozzi, and Joonseok Lee. N-gcn: Multi-scale graph con-
volution for semi-supervised node classification. International Workshop on Mining and Learning
with Graphs (MLG), 2018a.

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan, Nazanin Alipourfard,
Kristina Lerman, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolu-
tion architectures via sparsified neighborhood mixing. ICML 2019, 2019.

Eugene Belilovsky, Michael Eickenberg, and Edouard Oyallon. Greedy layerwise learning can scale
to imagenet. ICML, 2018.

Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsuper-
vised inductive learning via ranking. International Conference on Learning Representations,
ICLR 2019, 2018.

Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spectral networks and locally
connected networks on graphs. International Conference on Learning Representations, ICLR
2015, 2014.

Eliav Buchnik and Edith Cohen. Bootstrapped graph diffusions: Exposing the power of nonlinear-
ity. In Abstracts of the 2018 ACM International Conference on Measurement and Modeling of
Computer Systems, pp. 8–10. ACM, 2018.

Peter Bühlmann and Bin Yu. Boosting with the l 2 loss: regression and classification. Journal of the
American Statistical Association, 98(462):324–339, 2003.

Jie Chen, Tengfei Ma, and Cao Xiao. Fastgcn: fast learning with graph convolutional networks via
importance sampling. International Conference on Learning Representations, ICLR 2019, 2018.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks
on graphs with fast localized spectral filtering. In Advances in Neural Information Processing
Systems, pp. 3844–3852, 2016.

Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174, 2010.

Yoav Freund, Robert Schapire, and Naoki Abe. A short introduction to boosting. Journal-Japanese
Society For Artificial Intelligence, 14(771-780):1612, 1999.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural infor-
mation processing systems, pp. 2672–2680, 2014.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pp. 729–734. IEEE, 2005.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

Trevor Hastie, Saharon Rosset, Ji Zhu, and Hui Zou. Multi-class adaboost. Statistics and its Inter-
face, 2(3):349–360, 2009.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Furong Huang, Jordan Ash, John Langford, and Robert Schapire. Learning deep resnet blocks
sequentially using boosting theory. International Conference on Machine Learning, ICML 2018,
2018.

Wenxin Jiang et al. Process consistency for adaboost. The Annals of Statistics, 32(1):13–29, 2004.

9

Under review as a conference paper at ICLR 2021

Ming Jin, Heng Chang, Wenwu Zhu, and Somayeh Sojoudi. Power up! robust graph convolutional
network against evasion attacks based on graph powering. arXiv preprint arXiv:1905.10029,
2019.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. International Conference on Learning Representations, ICLR 2018, 2017.

Johannes Klicpera, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate:
Graph neural networks meet personalized pagerank. International Conference on Learning Rep-
resentations, ICLR 2019, 2018.

Guohao Li, Matthias Müller, Ali Thabet, and Bernard Ghanem. Can gcns go as deep as cnns? ICCV,
2019.

Qimai Li, Zhichao Han, and Xiao-Ming Wu. Deeper insights into graph convolutional networks for
semi-supervised learning. AAAI, 2018.

Renjie Liao, Zhizhen Zhao, Raquel Urtasun, and Richard S Zemel. Lanczosnet: Multi-scale deep
graph convolutional networks. International Conference on Learning Representations, ICLR
2019, 2019.

Aurelie C Lozano, Sanjeev R Kulkarni, and Robert E Schapire. Convergence and consistency of
regularized boosting with weakly dependent observations. IEEE Transactions on Information
Theory, 60(1):651–660, 2013.

Sitao Luan, Mingde Zhao, Xiao-Wen Chang, and Doina Precup. Break the ceiling: Stronger multi-
scale deep graph convolutional networks. Advances in Neural Information Processing Systems,
2019.

Gábor Lugosi and Nicolas Vayatis. On the bayes-risk consistency of boosting methods. 2001.

Shie Mannor, Ron Meir, and Tong Zhang. Greedy algorithms for classification–consistency, conver-
gence rates, and adaptivity. Journal of Machine Learning Research, 4(Oct):713–742, 2003.

Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the
construction of internet portals with machine learning. Information Retrieval, 3(2):127–163,
2000.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. In Relational Representation Learning Workshop (R2L 2018),
NeurIPS, 2018.

Ke Sun, Zhanxing Zhu, and Zhouchen Lin. Multi-stage self-supervised learning for graph convolu-
tional networks. AAAI, 2019.

Ilya O Tolstikhin, Sylvain Gelly, Olivier Bousquet, Carl-Johann Simon-Gabriel, and Bernhard
Schölkopf. Adagan: Boosting generative models. In Advances in Neural Information Processing
Systems, pp. 5424–5433, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. International Conference on Learning Representations, ICLR
2019, 2018.

Felix Wu, Tianyi Zhang, Amauri Holanda de Souza Jr, Christopher Fifty, Tao Yu, and Kilian Q
Weinberger. Simplifying graph convolutional networks. International Conference on Machine
Learning, ICML 2019, 2019.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? ICLR, 2018a.

10

Under review as a conference paper at ICLR 2021

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken-ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. International
Conference on Machine Learning, ICML 2018, 2018b.

Tong Zhang, Bin Yu, et al. Boosting with early stopping: Convergence and consistency. The Annals
of Statistics, 33(4):1538–1579, 2005.

Jun Zhu, Jiaming Song, and Bei Chen. Max-margin nonparametric latent feature models for link
prediction. arXiv preprint arXiv:1602.07428, 2016.

11

	Introduction
	Our Approach: AdaGCN
	Establishment of AdaGCN
	Comparison with Existing Methods

	Algorithm
	Experiments
	Design of Deep Graph Models to Circumvent Oversmoothing Effect
	Prediction Performance
	Computational Efficiency

	Discussions and Conclusion

